Lab 6: Chapter 4

1. A teacher decided to calculate z-scores for the scores (out of 100 points) on a test that students earned on an exam. The mean score on the exam was 84 points, and the standard deviation was 6.0 points. The teacher also calculated the z-scores for the points earned by students on homework assignments, which had a total of 250 points. The points earned on homework had a mean of 217 with a standard deviation of 9.8 points.

Student	x = homework points	z-score for x	y = exam score	z-score for y
1	181		75	
2	144		73	
3	212		94	

For each of the following pairs of variables in the next 3 exercises, identify which is likely to represent the independent (x) variable and which represents the dependent (y) variable.

- 2. Variable 1: Days without smoking for a participant in a cessation program Variable 2: Number of sessions attended by a smoker in a cessation program
- 3. Variable 1: Time spent by a student studying for a final examVariable 2: Score on the same final exam
- 4. Variable 1: Annual salary for a baseball playerVariable 2: Number of home runs hit per season by a baseball player

For each of the following pairs of variables, indicate whether you would expect a positive correlation, a negative correlation, or a correlation close to 0. Explain your choice.

- 5. x = daily hours of sunlight (in minutes)y = daily growth of plants (in mm)
- $6. \qquad x = number of wolves per square mile$
 - y = number of elks per square mile
- 7. x =height of a student in high school y =grade point average for a student in high school
- 8. Interest rate and number of loan applications
- 9. Height and IQ
- 10. Height and shoe size
- 11. Minimum daily temperature and cooling cost

For each of the lines below, identify values for the slope (b) and y-intercept (a).

12. y = 98.9 + 2.3x13. y = 0.727 + 0.178x14. y = 23 + 4x

15. Use the information in the table below to answer parts a through f. The ages (in years) of 10 men and their systolic blood pressures (in millimeters of mercury) are listed in the table.

Age, x	16	25	39	45	49	64	70	29	57	22
Systolic Blood Pressure, y	109	122	143	132	199	185	199	130	175	118

- (a) What is the sample correlation coefficient, r?
- (b) Describe the type of correlation
- (c) Interpret the meaning of the correlation in the context of the data.
- (d) Find the equation that represents the least squares regression line for the data.
- (e) Use the regression equation to predict the value of y for x = 42.
- (f) Use the regression equation to predict the blood pressure for a man aged 67.
- (g) Use the regression equation to predict the blood pressure for a man aged 80.
- 16. Use the information in the table below to answer parts a through g. The square footages and sale prices (in thousands of dollars) of seven homes are shown in the table at the left. (*Source: Howard Hanna*)

Square footage, x	1924	1592	2413	2332	1552	1312	1278
Sale price, y	174.9	136.9	275.0	219.9	120.0	99.9	145.0

- (a) What is the sample correlation coefficient, r?
- (b) Describe the type of correlation
- (c) Interpret the meaning of the correlation in the context of the data.
- (d) Find the equation that represents the least squares regression line for the data.
- (e) Use the regression equation to predict the home's sale price when the square footage is 1450 square feet.
- (f) Use the regression equation to predict the home's sale price when the square footage is 2720 square feet.
- (g) Use the regression equation to predict the home's sale price when the square footage is 2175 square feet.